Visualisation de signaux triphasés à l'aide de différents types de représentations et pour différents types de commande.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

317 lines
9.9 KiB

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, CheckButtons
from matplotlib.axes import Axes
from matplotlib.projections.polar import PolarAxes
PI = np.pi
N_PTS = 400
class TriPlot_TimeAxe(Axes):
"""Classe d'axe temporel"""
phase = 2*PI/3*np.array([0, 1, 2])
phasor = np.linspace(0-phase, 2*PI-phase, N_PTS).T
theta = phasor[0,:]
def __init__(self, v_max, phi, fig, rect, *args, **kwargs):
Axes.__init__(self, fig, rect, *args, **kwargs)
self.timegraph_plot = []
self.v_max = v_max
self.phi = phi
self.v_ref = np.zeros(self.phasor.shape)
return
def setup(self):
self.get_figure().add_axes(self)
self.timegraph_plot = [self.plot(self.theta, self.v_ref[i])[0] for i in range(3)]
self.grid()
self.set_xlim([0, 2*PI])
self.set_xticks([i*PI/6 for i in range(13)])
self.set_xticklabels([str(30*i)+"°" for i in range(13)])
self.set_xlabel("Phase")
self.set_ylim([-1.6*self.v_max, +1.6*self.v_max])
self.set_ylabel("Tension [V]")
self.timegraph_plot.append(
self.plot([self.phi*PI/180, self.phi*PI/180],
self.get_ylim(),
'--r')[0]
)
self.timegraph_plot.append(
self.scatter(3*[self.phi*PI/180],
[self.v_max*np.cos((self.phi-i*120)*PI/180) for i in range(3)],
c=["C0", "C1", "C2"]))
return
def refresh(self):
self.timegraph_plot[0].set_ydata(self.v_ref[0])
self.timegraph_plot[1].set_ydata(self.v_ref[1])
self.timegraph_plot[2].set_ydata(self.v_ref[2])
self.timegraph_plot[3].set_xdata(2*[self.phi*PI/180])
self.timegraph_plot[4].set_offsets(
np.array([3*[self.phi*PI/180],
[self.v_max*np.cos((self.phi-i*120)*PI/180) for i in range(3)]]
).T
)
return
def set_vmax(self, v_max):
self.v_max = v_max
self.v_ref = self.v_max*np.cos(self.phasor)
return
def set_phi(self, phi):
self.phi = phi
return
def set_parameters(self, p):
return
class TriPlot_VectAxe(PolarAxes):
"""Classe d'axe vectoriel"""
phase = 2*PI/3*np.array([0, 1, 2])
phasor = np.linspace(0-phase, 2*PI-phase, N_PTS).T
theta = phasor[0,:]
def __init__(self, v_max, phi, fig, rect, *args, **kwargs):
PolarAxes.__init__(self, fig, rect, *args, **kwargs)
self.plot_list = []
self.arrow_list = []
self.v_max = v_max
self.phi = phi
self.v_ref = np.zeros(self.phasor.shape)
self.parameters = {"projection": False}
return
def setup(self):
self.get_figure().add_axes(self)
self.set_rorigin(0)
self.set_ylim(0, 1.6*self.v_max)
theta_ticks = np.arange(0, 360, 30)
theta_labels = [str(t * (t<=180)
+ (t-360) * (t>180)) + "°"
for t in theta_ticks]
self.set_thetagrids(theta_ticks, labels=theta_labels)
self.plot_list.append(
self.plot(
self.theta, self.v_max*np.ones(self.theta.shape), 'r'
)[0]
)
for i in range(3):
self.plot_list.append(
self.plot(
[(self.phi-i*120)*PI/180,
PI*(1-np.sign(np.cos((self.phi-i*120)*PI/180)))],
[self.v_max,
self.v_max*np.abs(np.cos((self.phi-i*120)*PI/180))],
ls = ':',
visible=self.parameters["projection"]
)[0]
)
self.arrow_list = [
self.arrow(0, 0,
0, self.v_max,
lw=2, head_width=0.05, head_length=self.v_max/15,
color="C"+str(i), length_includes_head=True,
transform=(
mpl.transforms.Affine2D().translate(
(self.phi-i*120)*PI/180, 0
)
+ self.transData
)
)
for i in range(3)
] + [
self.arrow(0, 0,
0, self.v_max*np.abs(np.cos((self.phi-i*120)*PI/180)),
lw=1, head_width=0.05, head_length=self.v_max/15,
color="C"+str(i), length_includes_head=True,
transform=(
mpl.transforms.Affine2D().translate(
PI*(1-np.sign(
np.cos((self.phi-i*120)*PI/180)
)
)/2,
0
)
+ self.transData
),
visible=self.parameters["projection"]
)
for i in range(3)
]
return
def refresh(self):
self.plot_list[0].set_ydata(
self.v_max*np.ones(
self.theta.shape
)
)
for i, plot in enumerate(self.plot_list[1:4]):
plot.set_visible(self.parameters.get("projection"))
plot.set_xdata(
[(self.phi-i*120)*PI/180,
PI*(1-np.sign(np.cos((self.phi-i*120)*PI/180)))/2]
)
plot.set_ydata(
[self.v_max,
self.v_max*np.abs(np.cos((self.phi-i*120)*PI/180))]
)
for i in range(3):
self.arrow_list[i].set_data(dy=self.v_max)
self.arrow_list[i].set_transform(
mpl.transforms.Affine2D().translate(
(self.phi-i*120)*PI/180, 0)
+ self.transData
)
for i in range(3, 6):
self.arrow_list[i].set_visible(self.parameters["projection"])
self.arrow_list[i].set_data(
dy=self.v_max*np.abs(np.cos((self.phi-i*120)*PI/180))
)
self.arrow_list[i].set_transform(
mpl.transforms.Affine2D().translate(
PI*(1-np.sign(np.cos((self.phi-i*120)*PI/180)))/2, 0)
+ self.transData
)
return
def set_vmax(self, v_max):
self.v_max = v_max
self.v_ref = self.v_max*np.cos(self.phasor)
return
def set_phi(self, phi):
self.phi = phi
return
def set_parameters(self, p):
self.parameters["projection"] = p.get("projection", False)
return
class TriPlot:
"""Classe de graphique MLI"""
phase = 2*PI/3*np.array([0, 1, 2])
phasor = np.linspace(0-phase, 2*PI-phase, N_PTS).T
theta = phasor[0,:]
def __init__(self):
# Attributs scalaires
self.v_eff = 220
self.v_max = np.sqrt(2)*self.v_eff
self.v_ref = np.zeros(self.phasor.shape)
self.phi = 30
# Attributs graphiques
self.fig = plt.figure()
self.timeaxe = TriPlot_TimeAxe(self.v_max, self.phi,
self.fig, [0.1, 0.2, 0.4, 0.6])
self.vectaxe = TriPlot_VectAxe(self.v_max, self.phi,
self.fig, [0.5, 0.2, 0.5, 0.6])
self.axes = [self.timeaxe, self.vectaxe]
self.amp_slider = Slider(
ax=plt.axes([0.01, 0.1, 0.03, 0.8]),
label="Tension\nefficace",
valmin=0,
valmax=1.5*self.v_eff,
valinit=self.v_eff,
orientation="vertical"
)
self.phi_slider = Slider(
ax=plt.axes([0.1, 0.01, 0.8, 0.03]),
label="Phase [°]",
valmin=0,
valmax=360,
valinit=self.phi,
orientation="horizontal"
)
self.reset_button = Button(
ax=plt.axes([0.95, 0.01, 0.03, 0.03]),
label='Reset',
hovercolor='0.975'
)
self.parameters_check = CheckButtons(
ax=plt.axes([0.9, 0.8, 0.1, 0.2]),
labels=["Projection"]
)
self.sliders = [self.amp_slider, self.phi_slider]
self.parameters = {}
# Tracé du graphique
self.setup()
self.refresh()
return
def setup(self):
for axe in self.axes:
axe.setup()
for slider in self.sliders:
slider.on_changed(self.refresh)
self.reset_button.on_clicked(self.reset)
self.parameters_check.on_clicked(self.refresh)
return
def refresh(self, val=None):
self.set_veff(self.amp_slider.val)
self.set_phi(self.phi_slider.val)
self.set_parameters(self.parameters_check.get_status())
for axe in self.axes:
axe.refresh()
self.fig.canvas.draw()
return
def reset(self, event=None):
for slider in self.sliders:
slider.reset()
return
def set_vmax(self, v_max):
self.v_max = v_max
self.v_eff = v_max/np.sqrt(2)
self.v_ref = self.v_max*np.cos(self.phasor)
for axe in self.axes:
axe.set_vmax(self.v_max)
return
def set_veff(self, v_eff):
self.set_vmax(np.sqrt(2)*v_eff)
return
def set_phi(self, phi):
self.phi = phi
for axe in self.axes:
axe.set_phi(self.phi)
return
def set_parameters(self, p):
self.parameters["projection"] = p[0]
for axe in self.axes:
axe.set_parameters(self.parameters)
return
if __name__ == '__main__':
# Execute when the module is not initialized from an import statement.
plt.close('all')
my_plot = TriPlot()
plt.show(block=False)