|
|
@ -4,12 +4,149 @@ import numpy as np |
|
|
|
import matplotlib as mpl |
|
|
|
import matplotlib as mpl |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
from matplotlib.widgets import Slider, Button |
|
|
|
from matplotlib.widgets import Slider, Button |
|
|
|
|
|
|
|
from matplotlib.axes import Axes |
|
|
|
|
|
|
|
from matplotlib.projections.polar import PolarAxes |
|
|
|
|
|
|
|
|
|
|
|
PI = np.pi |
|
|
|
PI = np.pi |
|
|
|
|
|
|
|
|
|
|
|
N_PTS = 400 |
|
|
|
N_PTS = 400 |
|
|
|
|
|
|
|
|
|
|
|
class MLI_plot: |
|
|
|
|
|
|
|
|
|
|
|
class TriPlot_TimeAxe(Axes): |
|
|
|
|
|
|
|
"""Classe d'axe temporel""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
phase = 2*PI/3*np.array([0, 1, 2]) |
|
|
|
|
|
|
|
phasor = np.linspace(0-phase, 2*PI-phase, N_PTS).T |
|
|
|
|
|
|
|
theta = phasor[0,:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, v_max, phi, fig, rect): |
|
|
|
|
|
|
|
Axes.__init__(self, fig, rect) |
|
|
|
|
|
|
|
self.timegraph_plot = [] |
|
|
|
|
|
|
|
self.v_max = v_max |
|
|
|
|
|
|
|
self.phi = phi |
|
|
|
|
|
|
|
self.v_ref = np.zeros(self.phasor.shape) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup(self): |
|
|
|
|
|
|
|
self.get_figure().add_axes(self) |
|
|
|
|
|
|
|
self.timegraph_plot = [self.plot(self.theta, self.v_ref[i])[0] for i in range(3)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.grid() |
|
|
|
|
|
|
|
self.set_xlim([0, 2*PI]) |
|
|
|
|
|
|
|
self.set_xticks([i*PI/6 for i in range(13)]) |
|
|
|
|
|
|
|
self.set_xticklabels([str(30*i)+"°" for i in range(13)]) |
|
|
|
|
|
|
|
self.set_xlabel("Phase") |
|
|
|
|
|
|
|
self.set_ylim([-2.2*self.v_max, +2.2*self.v_max]) |
|
|
|
|
|
|
|
self.set_ylabel("Tension [V]") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.timegraph_plot.append( |
|
|
|
|
|
|
|
self.plot([self.phi*PI/180, self.phi*PI/180], |
|
|
|
|
|
|
|
self.get_ylim(), |
|
|
|
|
|
|
|
'--r')[0] |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
self.timegraph_plot.append( |
|
|
|
|
|
|
|
self.scatter(3*[self.phi*PI/180], |
|
|
|
|
|
|
|
[self.v_max*np.cos((self.phi-i*120)*PI/180) for i in range(3)], |
|
|
|
|
|
|
|
c=["C0", "C1", "C2"])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def refresh(self): |
|
|
|
|
|
|
|
self.timegraph_plot[0].set_ydata(self.v_ref[0]) |
|
|
|
|
|
|
|
self.timegraph_plot[1].set_ydata(self.v_ref[1]) |
|
|
|
|
|
|
|
self.timegraph_plot[2].set_ydata(self.v_ref[2]) |
|
|
|
|
|
|
|
self.timegraph_plot[3].set_xdata(2*[self.phi*PI/180]) |
|
|
|
|
|
|
|
self.timegraph_plot[4].set_offsets( |
|
|
|
|
|
|
|
np.array([3*[self.phi*PI/180], |
|
|
|
|
|
|
|
[self.v_max*np.cos((self.phi-i*120)*PI/180) for i in range(3)]] |
|
|
|
|
|
|
|
).T |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_vmax(self, v_max): |
|
|
|
|
|
|
|
self.v_max = v_max |
|
|
|
|
|
|
|
self.v_ref = self.v_max*np.cos(self.phasor) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_phi(self, phi): |
|
|
|
|
|
|
|
self.phi = phi |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TriPlot_VectAxe(PolarAxes): |
|
|
|
|
|
|
|
"""Classe d'axe vectoriel""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
phase = 2*PI/3*np.array([0, 1, 2]) |
|
|
|
|
|
|
|
phasor = np.linspace(0-phase, 2*PI-phase, N_PTS).T |
|
|
|
|
|
|
|
theta = phasor[0,:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, v_max, phi, fig, rect): |
|
|
|
|
|
|
|
PolarAxes.__init__(self, fig, rect) |
|
|
|
|
|
|
|
self.plot_list = [] |
|
|
|
|
|
|
|
self.arrow_list = [] |
|
|
|
|
|
|
|
self.v_max = v_max |
|
|
|
|
|
|
|
self.phi = phi |
|
|
|
|
|
|
|
self.v_ref = np.zeros(self.phasor.shape) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup(self): |
|
|
|
|
|
|
|
self.get_figure().add_axes(self) |
|
|
|
|
|
|
|
self.set_rorigin(0) |
|
|
|
|
|
|
|
self.set_ylim(0, 2.2*self.v_max) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theta_ticks = np.arange(0, 360, 30) |
|
|
|
|
|
|
|
theta_labels = [str(t * (t<=180) |
|
|
|
|
|
|
|
+ (t-360) * (t>180)) + "°" |
|
|
|
|
|
|
|
for t in theta_ticks] |
|
|
|
|
|
|
|
self.set_thetagrids(theta_ticks, labels=theta_labels) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.plot_list.append( |
|
|
|
|
|
|
|
self.plot( |
|
|
|
|
|
|
|
self.theta, self.v_max*np.ones(self.theta.shape), 'r' |
|
|
|
|
|
|
|
)[0] |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
self.arrow_list = [ |
|
|
|
|
|
|
|
self.arrow(0, 0, 0, self.v_max, |
|
|
|
|
|
|
|
lw=2, head_width=0.05, head_length=self.v_max/15, |
|
|
|
|
|
|
|
color="C"+str(i), length_includes_head=True, |
|
|
|
|
|
|
|
transform=( |
|
|
|
|
|
|
|
mpl.transforms.Affine2D().translate( |
|
|
|
|
|
|
|
(self.phi-i*120)*PI/180, 0 |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
+ self.transData |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
for i in range(3)] |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def refresh(self): |
|
|
|
|
|
|
|
self.plot_list[0].set_ydata( |
|
|
|
|
|
|
|
self.v_max*np.ones( |
|
|
|
|
|
|
|
self.theta.shape |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, arrow in enumerate(self.arrow_list): |
|
|
|
|
|
|
|
arrow.set_data(dy=self.v_max) |
|
|
|
|
|
|
|
arrow.set_transform( |
|
|
|
|
|
|
|
mpl.transforms.Affine2D().translate( |
|
|
|
|
|
|
|
(self.phi-i*120)*PI/180, 0 |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
+ self.transData |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_vmax(self, v_max): |
|
|
|
|
|
|
|
self.v_max = v_max |
|
|
|
|
|
|
|
self.v_ref = self.v_max*np.cos(self.phasor) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_phi(self, phi): |
|
|
|
|
|
|
|
self.phi = phi |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TriPlot: |
|
|
|
"""Classe de graphique MLI""" |
|
|
|
"""Classe de graphique MLI""" |
|
|
|
|
|
|
|
|
|
|
|
phase = 2*PI/3*np.array([0, 1, 2]) |
|
|
|
phase = 2*PI/3*np.array([0, 1, 2]) |
|
|
@ -26,8 +163,8 @@ class MLI_plot: |
|
|
|
# Attributs graphiques |
|
|
|
# Attributs graphiques |
|
|
|
self.fig = plt.figure() |
|
|
|
self.fig = plt.figure() |
|
|
|
self.ax = [ |
|
|
|
self.ax = [ |
|
|
|
plt.axes([0.1, 0.2, 0.40, 0.6]), |
|
|
|
TriPlot_TimeAxe(self.v_max, self.phi, self.fig, [0.1, 0.2, 0.4, 0.6]), |
|
|
|
plt.axes([0.45, 0.1, 0.55, 0.8]), |
|
|
|
TriPlot_VectAxe(self.v_max, self.phi, self.fig, [0.5, 0.2, 0.5, 0.6]), |
|
|
|
plt.axes([0.01, 0.1, 0.03, 0.8]), |
|
|
|
plt.axes([0.01, 0.1, 0.03, 0.8]), |
|
|
|
plt.axes([0.1, 0.01, 0.8, 0.03])] |
|
|
|
plt.axes([0.1, 0.01, 0.8, 0.03])] |
|
|
|
self.amp_slider = Slider( |
|
|
|
self.amp_slider = Slider( |
|
|
@ -47,113 +184,57 @@ class MLI_plot: |
|
|
|
orientation="horizontal" |
|
|
|
orientation="horizontal" |
|
|
|
) |
|
|
|
) |
|
|
|
self.amp_slider |
|
|
|
self.amp_slider |
|
|
|
self.timegraph_plot = [] |
|
|
|
|
|
|
|
self.vectorgraph_plot = [] |
|
|
|
self.vectorgraph_plot = [] |
|
|
|
self.vectorgraph_arrow = [] |
|
|
|
self.vectorgraph_arrow = [] |
|
|
|
|
|
|
|
|
|
|
|
# Tracé du graphique |
|
|
|
# Tracé du graphique |
|
|
|
self.setup() |
|
|
|
self.setup() |
|
|
|
self.update() |
|
|
|
self.refresh() |
|
|
|
|
|
|
|
|
|
|
|
return |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def setup(self): |
|
|
|
def setup(self): |
|
|
|
self.fig.subplots_adjust(left=0.25) |
|
|
|
self.fig.subplots_adjust(left=0.25) |
|
|
|
self.setup_timegraph() |
|
|
|
self.ax[0].setup() |
|
|
|
self.setup_vectorgraph() |
|
|
|
self.ax[1].setup() |
|
|
|
|
|
|
|
|
|
|
|
self.amp_slider.on_changed(self.update) |
|
|
|
|
|
|
|
self.phi_slider.on_changed(self.update) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup_timegraph(self): |
|
|
|
|
|
|
|
self.timegraph_plot = [self.ax[0].plot(self.theta, self.v_ref[i])[0] for i in range(3)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.ax[0].grid() |
|
|
|
|
|
|
|
self.ax[0].set_xlim([0, 2*PI]) |
|
|
|
|
|
|
|
self.ax[0].set_xticks([i*PI/6 for i in range(13)]) |
|
|
|
|
|
|
|
self.ax[0].set_xticklabels([str(30*i)+"°" for i in range(13)]) |
|
|
|
|
|
|
|
self.ax[0].set_xlabel("Angle") |
|
|
|
|
|
|
|
self.ax[0].set_ylim([-3*self.v_eff, +3*self.v_eff]) |
|
|
|
|
|
|
|
self.ax[0].set_ylabel("Tension [V]") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.timegraph_plot.append( |
|
|
|
|
|
|
|
self.ax[0].plot([self.phi*PI/180, self.phi*PI/180], |
|
|
|
|
|
|
|
self.ax[0].get_ylim(), |
|
|
|
|
|
|
|
'--r')[0] |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
self.timegraph_plot.append( |
|
|
|
|
|
|
|
self.ax[0].scatter(3*[self.phi*PI/180], |
|
|
|
|
|
|
|
[self.v_max*np.cos((self.phi-i*120)*PI/180) for i in range(3)], |
|
|
|
|
|
|
|
c=["C0", "C1", "C2"])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup_vectorgraph(self): |
|
|
|
|
|
|
|
self.ax[1] = plt.subplot(122, polar=True) |
|
|
|
|
|
|
|
self.ax[1].set_rorigin(0) |
|
|
|
|
|
|
|
self.ax[1].set_ylim(0, 3*self.v_eff) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theta_ticks = np.arange(0, 360, 30) |
|
|
|
|
|
|
|
theta_labels = [str(t * (t<=180) |
|
|
|
|
|
|
|
+ (t-360) * (t>180)) + "°" |
|
|
|
|
|
|
|
for t in theta_ticks] |
|
|
|
|
|
|
|
self.ax[1].set_thetagrids(theta_ticks, labels=theta_labels) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.vectorgraph_plot.append(self.ax[1].plot(self.theta, self.v_max*np.ones(self.theta.shape), 'r')[0]) |
|
|
|
self.amp_slider.on_changed(self.refresh) |
|
|
|
self.vectorgraph_arrow = [self.ax[1].arrow(0, 0, 0, self.v_max, |
|
|
|
self.phi_slider.on_changed(self.refresh) |
|
|
|
lw=2, head_width=0.05, head_length=self.v_max/15, |
|
|
|
|
|
|
|
color="C"+str(i), length_includes_head=True, |
|
|
|
|
|
|
|
transform=(mpl.transforms.Affine2D().translate((self.phi-i*120)*PI/180, 0) |
|
|
|
|
|
|
|
+self.ax[1].transData) |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
for i in range(3)] |
|
|
|
|
|
|
|
return |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def update(self, val=None): |
|
|
|
def refresh(self, val=None): |
|
|
|
self.set_veff(self.amp_slider.val) |
|
|
|
self.set_veff(self.amp_slider.val) |
|
|
|
self.phi = self.phi_slider.val |
|
|
|
self.set_phi(self.phi_slider.val) |
|
|
|
self.update_timegraph() |
|
|
|
self.ax[0].refresh() |
|
|
|
self.update_vectorgraph() |
|
|
|
self.ax[1].refresh() |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_timegraph(self): |
|
|
|
|
|
|
|
self.timegraph_plot[0].set_ydata(self.v_ref[0]) |
|
|
|
|
|
|
|
self.timegraph_plot[1].set_ydata(self.v_ref[1]) |
|
|
|
|
|
|
|
self.timegraph_plot[2].set_ydata(self.v_ref[2]) |
|
|
|
|
|
|
|
self.timegraph_plot[3].set_xdata(2*[self.phi*PI/180]) |
|
|
|
|
|
|
|
self.timegraph_plot[4].set_offsets( |
|
|
|
|
|
|
|
np.array([3*[self.phi*PI/180], |
|
|
|
|
|
|
|
[self.v_max*np.cos((self.phi-i*120)*PI/180) for i in range(3)]] |
|
|
|
|
|
|
|
).T |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_vectorgraph(self): |
|
|
|
|
|
|
|
self.vectorgraph_plot[0].set_ydata(self.v_max*np.ones(self.theta.shape)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, arrow in enumerate(self.vectorgraph_arrow): |
|
|
|
|
|
|
|
arrow.set_data(dy=self.v_max) |
|
|
|
|
|
|
|
arrow.set_transform(mpl.transforms.Affine2D().translate((self.phi-i*120)*PI/180, 0) |
|
|
|
|
|
|
|
+self.ax[1].transData) |
|
|
|
|
|
|
|
return |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def reset(self, event=None): |
|
|
|
def reset(self, event=None): |
|
|
|
return |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def set_veff(self, v_eff): |
|
|
|
def set_veff(self, v_eff): |
|
|
|
self.v_eff = v_eff |
|
|
|
self.set_vmax(np.sqrt(2)*v_eff) |
|
|
|
self.v_max = np.sqrt(2)*v_eff |
|
|
|
|
|
|
|
self.v_ref = self.v_max*np.cos(self.phasor) |
|
|
|
|
|
|
|
return |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def set_vmax(self, v_max): |
|
|
|
def set_vmax(self, v_max): |
|
|
|
self.v_max = v_max |
|
|
|
self.v_max = v_max |
|
|
|
self.v_eff = v_max/np.sqrt(2) |
|
|
|
self.v_eff = v_max/np.sqrt(2) |
|
|
|
self.v_ref = self.v_max*np.cos(self.phasor) |
|
|
|
self.v_ref = self.v_max*np.cos(self.phasor) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.ax[0].set_vmax(self.v_max) |
|
|
|
|
|
|
|
self.ax[1].set_vmax(self.v_max) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_phi(self, phi): |
|
|
|
|
|
|
|
self.phi = phi |
|
|
|
|
|
|
|
self.ax[0].set_phi(self.phi) |
|
|
|
|
|
|
|
self.ax[1].set_phi(self.phi) |
|
|
|
return |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
if __name__ == '__main__': |
|
|
|
# Execute when the module is not initialized from an import statement. |
|
|
|
# Execute when the module is not initialized from an import statement. |
|
|
|
plt.close('all') |
|
|
|
plt.close('all') |
|
|
|
myMLI_plot = MLI_plot() |
|
|
|
my_plot = TriPlot() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.show(block=False) |
|
|
|